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Abstract We present an operatorial technique that uses Schwinger action principle, by
means of quantum canonical transformations. This technique enables us to decouple the
Hamiltonian of 3-dimensional time dependent quadratic systems (3D TDQS) with linear
terms and to transform it to that of free particles, in order to determine exactly the relative
propagator of the system. The study is made in this paper for general 3D systems with 3 hy-
brid anisotropic and varying coupling terms (containing both of position and momentum
components), for 3D systems with one varying hybrid coupling term, and for 3D systems
with no coupling terms. Two physically relevant examples are presented to illustrate the
concrete application of the general formula obtained in this study, those of charged particles
in scalar and vector potentials.

Keywords Calculus of variations · Quantum mechanics · Formalism

1 Introduction

Time-Dependent Quadratic Systems (TDQS) are widely dealt with in physics such for: par-
ticles in electromagnetic field, waves in nonlinear media, interaction of atoms or molecules
with electromagnetic radiation. And this is the origin of the growing interest in propagators
of such systems. Functional methods are usually employed to derive propagators for TDQS
via path integrals [1–6]. In the other hand, Schwinger action principle, which is an opera-
torial method [7, 8] has not taken interest as it should have, and it was not confronted to
all realistic and existing problems, nevertheless, it gives the opportunity to find propagators
for more complicated problems with more exactness and rigorousness than with functional
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methods. However, propagators for TDQS were determined exactly for some general cases
with Schwinger action principle using semi classical method [9, 10] or analytical method
via resolution of Heisenberg differential equations [11–13].

Canonical transformations are fruitful tools to simplify the study of complicated systems.
They succeeded to transform the Hamiltonian of general 1D TDQS to that of a free particle
following Schwinger action principle [14], and they were able to reduce, for example, the
motion of Bloch electrons in homogeneous magnetic fields to at most two dimensions in the
general three dimensional case for any arbitrary rational fields [15], and many other studies
were made in the same way [6, 16–18].

For N -dimensional systems, coupling terms should be eliminated with canonical trans-
formations in order to transform Hamiltonians with coupling terms to those of simpler un-
coupled systems [16]; we can refer here to the case of the elimination of electron–phonon
interaction in order to obtain the effective electron–electron scattering [19]. Therefore, di-
agonalization of Hamiltonians by means of time-dependent canonical transformations is of
great utility to make this decoupling, and it was applied for dissipative systems in quantum
optics and in condensed matter systems [20].

The aim of this paper is to establish a generalisation of pure operatorial Schwinger action
principle method by means of canonical transformations, to determine exact propagators for
3D TDQS. And as Heisenberg differential equations restrict the generalisation of Schwinger
action principle, the introduction of quantum canonical transformations avoid the resolution
of these equations, and simplify the Hamiltonian by making a diagonalization in matrices of
its quadratic terms.

In [14], we have realized successfully the generalization of Schwinger action principle
via canonical transformations for the most general 1D TDQS. We go on in our generaliza-
tion, and we formulate this generalization for 3D TDQS with hybrid varying couplings. We
will preserve here the same notation as for [14]. However, for a 3D system, with position
vector and momentum vector expressed respectively as

x̂ =
(

x1

x2

x3

)
and p̂ =

(
p1

p2

p3

)
,

Schwinger action principle is expressed in terms of the variation of the action operator Ŵ as

δ〈x′′, t ′′|x′, t ′〉 = i

�
〈x′′, t ′′|δŴ |x′, t ′〉

with

δŴ = p̂′′δx̂′′ − p̂′δx̂′ − Ĥ ′′δt ′ + Ĥ ′δt ′, (1)

where x̂′ and x̂′′ are respectively initial and final position vector operators at initial and final
instants t ′ and t ′′. The action operator should be rearranged by means of the commutator
related to x̂′′ and x̂′, to obtain the well ordered action such as x̂′′ stands in the left of x̂′. This
step enables us to get the eigen value of δŴ , and to make the integration. The propagator of
the system is then obtained by means of Schwinger action principle, using (1), as

〈x′′, t ′′|x′, t ′〉 = C exp

(
i

�
w(x′′,x′, t ′′, t ′)

)
, (2)
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where w is the eigen value of the well ordered action operator. The coefficient C is deter-
mined from the normalization condition:

lim
t ′′→t ′

〈x ′′
i , t ′′|x ′

i , t
′〉 = δ(x ′′

i − x ′
i ).

In this work we are going to use quantum canonical transformations: (x̂, p̂) → (X̂, P̂), in
evaluating propagators in the same way as in the previous work [14]. And it will be necessary
to determine the quantum generating functions F̂1, and F̂2, in order to specify the appropriate
canonical transformations, so that for a certain direction x̂i :

p̂i = δF̂2(x̂, P̂, t)

δx̂i

, X̂i = δF̂2(x̂, P̂, t)

δP̂i

(3)

and

F̂1(x̂, X̂, t) = −1

2
(X̂P̂ + P̂X̂) + F̂2(x̂, P̂, t). (4)

The function playing the role of the Hamiltonian in the new coordinates set is then expressed
in terms of the generating function as

ˆ̃
H = Ĥ + δF̂2

δt
. (5)

In this case, the variation of the action operator is expressed in the new coordinate set as:

δŴ (P̂, X̂, t) = P̂′′δX̂′′ − P̂′δX̂′ − ˆ̃
H ′′δt ′′ + ˆ̃

H ′δt ′ + δ(F̂ ′′
1 − F̂ ′

1). (6)

Schwinger action principle is then applied to find the propagator in the new set, which
is subsequently turned to the former set, and written in terms of the well ordered action
obtained from (6) in the new set of coordinates:

〈x′′, t ′′|x′, t ′〉 = C exp

(
i

�
w(X′′,X′, t ′′, t ′)

)
, (7)

A here is determined from the normalization condition [14].
This paper is organized as follows. In Sect. 2 we construct a model in which we deter-

mine exactly the propagator for general 3D TDQS with linear terms by means of Schwinger
action principle, after making a diagonalization in matrices of quadratic terms in the Hamil-
tonian via canonical transformations. In Sects. 3, 4, and 5, we will make applications of
the general result obtained in Sect. 2, in treating successively the cases of: a general sys-
tem with one varying hybrid coupling, then a general system with three varying anisotropic
hybrid couplings, and finally a general system with three linear independent movements.
Section 6 is devoted to the summary.

2 Propagators for 3D TDQS with Linear Terms

The Hamiltonian of a general 3D TDQS with linear terms is expressed as:

Ĥ = p̂G1p̂ + x̂G2x̂ + x̂G3p̂ + p̂G4x̂ + z1x + z2p̂ + δ(t), (8)
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where δ(t) is an arbitrary time dependent function; z1, z2 and are time dependent vectors;
G1 and G2 are diagonal matrices; and G3 and G4 are antisymmetric matrices so that

G1 =
(

g1(t) 0 0
0 g2(t) 0
0 0 g3(t)

)
, G2 =

(
h1(t) 0 0

0 h2(t) 0
0 0 h3(t)

)
, G3 = GT

4 ,

G3 = G31 + G32, G31 =
(

k1(t) 0 0
0 k2(t) 0
0 0 k3(t)

)
, (9)

G32 = 1

2

( 0 l3(t) −l2(t)

−l3(t) 0 l1(t)

l2(t) −l1(t) 0

)
.

In the generalization made for 1D TDQS which has a linear motion [14], we have just intro-
duced a translation in the canonical transformations. For the 3D system described above, the
hybrid coupling term is due to angular momentum, for this reason we establish the canonical
transformations from a translation and a rotation. Consequently, we consider the following
canonical transformations: {

x̂ = (2m)1/2DRTX̂ + f1,

p̂ = (2m)−1/2D−1RT−1P̂ + f2,
(10)

where m is the mass of the particle; R a rotation matrix which is an antisymmetric one so
that its transposed matrix RT = R−1, and it is used to delete the hybrid coupling terms; f1

and f2 are time dependent vectors used to delete the linear terms; D and T are time dependent
diagonal matrices, where

T =
(

ρ1(t) 0 0
0 ρ2(t) 0
0 0 ρ2(t)

)
and D2 = G1. (11)

Equations (3) and (4) enable us to find the following generating functions:

⎧⎪⎪⎨
⎪⎪⎩

F̂2 = (8m)−1/2(x̂D−1RT−1P̂ + D−1RT−1P̂x̂) + f2x̂ − (2m)−1/2P̂T−1R−1D−1f1

= 1

2
(X̂P̂ + P̂X̂) + (2m)1/2f2DRTX̂ + f1f2,

F̂1 = (2m)1/2f2DRTX̂ + f1f2.

(12)

Hence the Hamiltonian is transformed, after using (5) with the properties of the transposed
matrix and those of rotation and diagonal matrices, to

�̂H(P̂, X̂, t) = (2m)−1P̂D1P̂ + 2mX̂D2X̂ + X̂D3P̂ + P̂D4X̂ + (2m)1/2X̂TR−1DK1

+ (2m)−1/2P̂T−1R−1D−1K2 + �(t), (13)

where

D1 = T−2, (14)

D2 = TR−1DG2DRT, (15)
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D3 = TR−1D
(

1

2
Ḋ−1 + G3D−1

)
RT−1 + 1

2
(R−1ṘT−1 + Ṫ−1), (16)

D4 = DT
3 = T−1R−1

(
1

2
Ḋ−1 + D−1G4

)
DRT + 1

2
(T−1Ṙ−1R + Ṫ−1)T, (17)

K1 = ḟ2 + 2G3f2 + 2G2f1 + z1, (18)

K2 = −ḟ1 + 2G4f1 + 2G1f2 + z2, (19)

and

�(t) = ḟ2f1 + f1G2f1 + f2G1f2 + 2f1G3f2 + z1f1 + z2f2 + δ(t). (20)

We define here: ḟi = ∂fi
∂t

, Ḋ = ∂D
∂t

, Ṙ = ∂R
∂t

, Ṫ = ∂T
∂t

. Now we will solve the following differ-
ential equations system in order to drop the linear terms in the new Hamiltonian by nullifying
their coefficients such as {

ḟ1 − 2G4f1 − 2G1f2 = z2,

ḟ2 + 2G3f2 + 2G2f1 = −z1.
(21)

The solutions of these equations depend on the values of the matrices elements. And to
delete the coupling terms, i.e. the elements of the matrix G32, we nullify, in the matrix D3,
the elements D3ij generated by the matrix G32, i.e. for i �= j , so that we leave the diagonal
elements D3ii . To be done we consider

A = D3 = DT
3 = D4 = 1

2
T(Ṫ−1 + R−1(DḊ−1 + 2G31)RT−1). (22)

This step nullifies the existing coupling in the system dynamic, but the matrix R, which is
a non diagonal matrix, generates, in the general case, new dynamic or static dynamical or
static coupling terms what complicates the problem. For this reason, and as this technique
is developed, for the moment, only in the case of hybrid couplings, the choice of the sys-
tem is restricted to those systems containing a hybrid coupling term and a partial isotropy
in the quadratic terms for the same directions. This means that systems with three varying
couplings require 3-dimensional quadratic isotropy in order to be a solvable problem. Oth-
erwise, a system with anisotropic quadratic terms in three dimensions, i.e. a system with
three independent linear movements, does not permit the existence of any hybrid coupling
term. This condition of isotropy is not imposed to the linear terms. In verifying this con-
dition, the matrix A would be a diagonal one. We obtain then the following differential
equation:

Ṙ = −2DG32D−1R. (23)

The system will be decoupled once this differential equation is resolved. Consequently, we
write the simplified Hamiltonian and the action operator variation in the new coordinate set
as { �̂H(P̂, X̂, t) = (2m)−1P̂D1P̂ + 2mX̂D2X̂ + X̂AP̂ + P̂AX̂ + �(t),

δŴ = P̂′′δX̂′′ − �̂H ′′δt ′′ − P̂′δX̂′ + �̂H ′
δt ′ + δ[F̂ ′′

1 − F̂ ′
1].

(24)
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We introduce now the following canonical transformation:

{ ˆ̃X = X̂,

ˆ̃P = P̂ + 2mD−1
1 AX̂.

(25)

It has been said previously that T and A are diagonal matrices, leading to D−1
1 A = (D−1

1 A)T .
Consequently, we determine from (3) and (4) the following generating functions for this
transformation: ⎧⎪⎨

⎪⎩
ˆ̃
F 2 = 1

2
(X̂ ˆ̃P + ˆ̃PX̂) − mX̂D−1

1 AX̂,

ˆ̃
F 1 = −mX̂D−1

1 AX̂

(26)

Then (5) enables us to transform the Hamiltonian in (24) to

ˆ̃
H(

ˆ̃P, X̂, t) = 1

2m

ˆ̃PD1
ˆ̃P + m

2
X̂D1�X̂ + �(t), (27)

where

� = 4D−1
1

(
D2 − AD−1

1 A − 1

2
(Ḋ−1

1 A + D−1
1 Ȧ)

)
. (28)

When substituting (14–16) in (28) and taking into consideration the fact that matrices D,
G2, G31, and T, are diagonal ones, with the condition of isotropy that should be verified
totally or partially in certain circumstances as explained above. Thus, the matrix R will have
no effect on the matrix A in (22). We obtain then

� = T3(T̈ + T(4D2G2 − 4G2
31 + 4D−1ḊG31 − 2D−2Ḋ2 + D−1D̈ − 2Ġ31)) (29)

which is also a diagonal matrix. Reaching this stage we have successfully decoupled the
Hamiltonian into 3 independent linear systems, what enables us to write the new Hamil-
tonian as:

ˆ̃
H(

ˆ̃P, X̂, t) = ˆ̃
H 1 + ˆ̃

H 2 + ˆ̃
H 3 + �(t) = �(t) +

3∑
i=1

ˆ̃
H, (30)

where ˆ̃
H , is the partial Hamiltonian of a quadratic system in xi direction. And from (11)

and (27) this partial Hamiltonian takes the form

ˆ̃
Hi = 1

2mρ2
i

ˆ̃
P i

2 + m

2ρ2
i

X̂i�iiX̂i .

In order to delete the matrix D1 from the expression (27) of the Hamiltonian, and to have
a simpler form similar to that of 3D free particle, we apply the following partial temporal
transformation to each of the three partial Hamiltonians:

dτi

dt
= 1

ρ2
i

(31)

and write each Hamiltonian as

Ĥi(
ˆ̃
P i, X̂i, τi) = ρ2

i
ˆ̃

Hi(
ˆ̃
P i, X̂i, t), (32)
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to obtain finally the Hamiltonian as

Ĥ = Ĥ0 + �(t)

with

Ĥ0 =
3∑

i=1

Ĥi = 1

2m

ˆ̃P 2 + m

2
X̂�X̂. (33)

The variation of the action operator is expressed then in the new representation as

δŴ =
3∑

i=1

(
ˆ̃
P i

′′δX̂′′
i − Ĥ ′′

i δτ ′′
i − ˆ̃

P i
′δX̂′

i + Ĥ ′
i δτ

′
i ) + δ[F̂1

′′ − F̂1
′ + ˆ̃

F ′′
1 − ˆ̃

F ′
1 + �(τ)] (34)

with: � = ∫ t ′′
t ′ �dt , and � verifies expression (20). If we consider � = 0 in (29) it will be

required to solve the following second order differential equation:

T̈ + T�(t) = 0, (35)

where

�(t) = 4D2G2 − 4G2
31 + 4D−1ḊG31 − 2D−2Ḋ2 + D−1D̈ − 2Ġ31. (36)

The solution of this differential equation is related to the nature of the studied system as it
depends on the expressions of the matrices Gi . The system is finally transformed to a com-
bination of three free particles, with one degree of freedom for each of them, and moving
independently from each others in the three directions:

Ĥ =
3∑

i=1

Ĥi + �(t)

with

Ĥi =
ˆ̃
P i

2

2m
. (37)

Consequently, we can write the variation of the action operator as

δŴ =
3∑

i=1

δŴi + δ[F̂ ′′
1 − F̂ ′

1 + ˆ̃
F i

′′ − ˆ̃
F i

′ + �(t)] (38)

with δŴi the variation of the action operator for a free particle moving in the direction xi .
Using Schwinger action principle after decoupling the system into three independent move-
ments, we obtain the propagator as a multiplication of three propagators for free particles
with an additional factor

〈X′′, t ′′|X′, t ′〉 =
3∏

i=1

(〈X′′
i , τ

′′
i |X′

i , τ
′
i 〉) exp

i

�
[F ′′

1 − F ′
1 + F̃ ′′

1 − F̃ ′
1 − �]. (39)

Knowing that the propagator for a free particle moving in a direction xi takes the form

〈X′′
i , τ

′′|X′
i , τ

′〉 =
(

2πi�(τ ′′ − τ ′)
m

)−1/2

exp
im(X′′

i − X′
i )

2

2�(τ ′′ − τ ′)
(40)
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and from the partial temporal transformation (31) which leads to

τ ′′
i − τ ′

i =
∫ t ′′

t ′

dt

ρ2
i

, (41)

the canonical transformations (10) make it possible to write the propagator of the system as

〈x′′, t ′′|x′, t ′〉

= A

(
2πi�

m

)−3/2

exp

(
f′′2x′′ − f′2x′ − i

�
�

) 3∏
i=1

(∫ t ′′

t ′

dt

ρ2
i

)−1/2

× exp

(
i

4�

3∑
i=1

((
3∑

j=1

R′′−1
ij (x ′′

j − f ′′
1j

)

ρ ′′
i g

′′1/2
i

−
R′−1

ij (x ′
j − f ′

1j
)

ρ ′
ig

′1/2
i

)2/∫ t ′′

t ′

dt

ρ2
i

− 1

g′′
i

(
2k′′

i − ρ̇ ′′
i

ρ ′′
i

− ġ′′
i

2g′′
i

)
(x ′′

i − f ′′
1i
)2 + 1

g′
i

(
2k′

i − ρ̇ ′
i

ρ ′
i

− ġ′
i

2g′
i

)
(x ′

i − f ′
1i
)2

))
. (42)

We use the following expression:

lim
ε→0

(επ)−1/2 exp

(
− (x ′′ − x ′)2

ε

)
= δ(x ′′ − x ′) (43)

with the normalization condition to calculate the coefficient A [14]. We get finally the exact
propagator, which represents the kernel of the general 3D TDQS with linear terms, in its
final shape:

〈x′′, t ′′|x′, t ′〉

= (4πi�)−3/2 exp

(
f′′2x′′ − f′2x′ − i

�
�

) 3∏
i=1

(
ρ ′

iρ
′′
i g

′1/2
i g

′′1/2
i

∫ t ′′

t ′

dt

ρ2
i

)−1/2

× exp

(
i

4�

3∑
i=1

((
3∑

j=1

R′′−1
ij (x ′′

j − f ′′
1j

)

ρ ′′
i g

′′1/2
i

−
R′−1

ij (x ′
j − f ′

1j
)

ρ ′
ig

′1/2
i

)2/∫ t ′′

t ′

dt

ρ2
i

− 1

g′′
i

(
2k′′

i − ρ̇ ′′
i

ρ ′′
i

− ġ′′
i

2g′′
i

)
(x ′′

i − f ′′
1i
)2 + 1

g′
i

(
2k′

i − ρ̇ ′
i

ρ ′
i

− ġ′
i

2g′
i

)
(x ′

i − f ′
1i
)2

))
, (44)

where � = ∫ t ′′
t ′ �dt , � verifies (20), and the vectors fi and the values ρi are respectively the

solutions of the differential equations (21) and (35).
The general solutions of the differential equations (21), (23), and (35), on which depends

the propagator (44), are combinations of independent solutions depending on the arbitrary
constants of integration. In the applications that will be illustrated in the following sections,
it could be verified the existence of an invariance property in the system propagator called
“gauge invariance”, related to the choice of these constants.

As applications of the general result obtained in (44), we are going to treat, in the fol-
lowing sections, the three general cases explained above: a system with only one varying
coupling and a partial isotropy in the quadratic terms, a system with 3 varying couplings
and isotropic quadratic terms, and an anisotropic quadratic system without any coupling.
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The vectors f1 and f2 in the canonical transformations (10) are used in order to delete the
linear terms in the Hamiltonian (8) of the general 3D system. If we consider the following
particular case by taking, z1 = 0, z2 = 0 and δ(t) = 0 in the Hamiltonian (8) such as

Ĥ = p̂G1p̂ + x̂G2x̂ + x̂G3p̂ + p̂G4x̂, (45)

the canonical transformation (10) becomes after dropping f1 and f2:

{
x̂ = (2m)1/2DRTX̂,

p̂ = (2m)−1/2D−1RT−1P̂.
(46)

We will not do again all the steps of the previous paragraph, we will only use directly the
result (44) obtained after solving differential equations (23) and (35), and we will make
the substitutions considered above. The propagator of the system takes then the following
expression:

〈x′′, t ′′|x′, t ′〉 = (4πi�)−3/2
3∏

i=1

(
ρ ′

iρ
′′
i g

′′1/2
i g

′′1/2
i

∫ t ′′

t ′

dt

ρ2
i

)−1/2

× exp

(
i

4�

3∑
i=1

((
3∑

j=1

R′′−1
ij x ′′

j

ρ ′′
i g

′′1/2
i

− R′−1
ij x ′

j

ρ ′
ig

′1/2
i

)2/∫ t ′′

t ′

dt

ρ2
i

− 1

g′′
i

(
2k′′

i − ρ̇ ′′
i

ρ ′′
i

− ġ′′
i

2g′′
i

)
x ′′2

i + 1

g′
i

(
2k′

i − ρ̇ ′
i

ρ ′
i

− ġ′
i

2g′
i

)
x ′2

i

))
, (47)

where ρi is the solution of the differential equation (35).

3 The Propagator for 3D TDQS with One Varying Coupling

3.1 General Case

It is imposed to the coupling in the system to be in the same directions as the partial isotropy,
in order to apply expression (44) here immediately. For this reason, we introduce in this
section the coupling and the partial isotropy in quadratic terms in x1 and x2 directions,
whereas the anisotropy is preserved for the linear terms in each of the three directions. In
this case, the matrices Gi , in the Hamiltonian (8), and expressed in (9), take the following
forms:

G1 =
(

g(t) 0 0
0 g(t) 0
0 0 g3(t)

)
, G2 =

(
h(t) 0 0

0 h(t) 0
0 0 h3(t)

)
, G3 = GT

4 ,

G3 = G31 + G32, G31 =
(

k(t) 0 0
0 k(t) 0
0 0 k3(t)

)
, G32 = 1

2

( 0 l(t) 0
−l(t) 0 0

0 0 0

)
.

(48)
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We will apply to this system the same canonical transformations as that of (10), where the
time dependent matrices D and T verify the followings formulas:

T =
(

ρ(t) 0 0
0 ρ(t) 0
0 0 ρ(t)

)
and D =

(
g1/2(t) 0 0

0 g1/2(t) 0
0 0 g

1/2
3 (t)

)
, where D2 = G1

(49)
and as the angular momentum, which involves the coupling terms, is in the x3 direction, the
rotation in the canonical transformations will be chosen in the same direction, in order to
eliminate this coupling, so that the matrix R takes the form:

R =
( cos θ sin θ 0

− sin θ cos θ 0
0 0 1

)
. (50)

The differential equation (23) is then reduced to the solution of the differential equations
(23) is then

θ̇ = −l(t). (51)

We make these substitutions in (44) to get finally the propagator for a general 3D TDQS,
with a one varying hybrid coupling and linear terms, as

〈x′′, t ′′|x′, t ′〉

= (4πi�)−3/2 exp

(
f ′′

21
x ′′

1 − f ′
21

x ′
1 + f ′′

22
x ′′

2 − f ′
22

x ′
2 − i

�
�

)

×
(

g′′1/2g′1/2ρ ′′ρ ′
∫ t ′′

t ′

dt

ρ2

)−1

exp

(
i

4�

(((
(x ′′

1 − f ′′
11

) cos θ ′′ − (x ′′
2 − f ′′

12
) sin θ ′′

ρ ′′g′′1/2

− (x ′
1 − f ′

11
) cos θ ′ − (x ′

2 − f ′
12

) sin θ ′

ρ ′g′1/2

)2

+
(

(x ′′
1 − f ′′

11
) sin θ ′′ + (x ′′

2 − f ′′
12

) cos θ ′′

ρ ′′g′′1/2

− (x ′
1 − f ′

11
) sin θ ′ + (x ′

2 − f ′
12

) cos θ ′

ρ ′g′1/2

)2)/∫ t ′′

t ′

dt

ρ2

− 1

g′′

(
2k′′ − ρ̇ ′′

ρ ′′ − ġ′′

2g′′

)
((x ′′

1 − f ′′
11

)2 + (x ′′
2 − f ′′

12
)2)

+ 1

g′

(
2k′ − ρ̇ ′

ρ ′ − ġ′

2g′

)
((x ′

1 − f ′
11

)2 + (x ′
2 − f ′

12
)2)

))

×
(

g
′′1/2
3 g

′1/2
3 ρ ′′

3 ρ ′
3

∫ t ′′

t ′

dt

ρ2
3

)−1/2

exp

(
i

4�

((
(x ′′

3 − f ′′
13

)

ρ ′′
3 g

′′1/2
3

− (x ′
3 − f ′

13
)

ρ ′
3g

′1/2
3

)2

/∫ t ′′

t ′

dt

ρ2
3

− 1

g′′
3

(
2k′′

3 − ρ̇ ′′
3

ρ ′′
3

− ġ′′
3

2g′′
3

)
(x ′′

3 − f ′′
13

)2

+ 1

g′
3

(
2k′

3 − ρ̇ ′
3

ρ ′
3

− ġ′
3

2g′
3

)
(x ′

3 − f ′
13

)2 + f ′′
23

x ′′
3 − f ′

23
x ′

3

))
, (52)

where � = ∫ t ′′
t ′ �dt , and � verifies (20) and the vectors fi , and the value ρi , are, respectively,

the solutions of the differential equations (21), and (35).
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As the canonical transformation does not mix the first two degrees of freedom with the
third one, the propagator is in fact the multiplication of two propagators for two independent
systems: a two dimensional quadratic system with a varying hybrid coupling and a certain
isotropy in the directions x1 and x2, and a general one dimensional quadratic system in the
direction x3. It can be seen that the propagator of this later takes exactly the form obtained
with this technique in our first generalization for 1D systems [14]. In this regard, we have to
deal only with a two dimensional problem.

Particularly, and as in the previous section, we will consider z1 = 0, z2 = 0, and δ(t) = 0
in the Hamiltonian (8), what leads to the quadratic Hamiltonian (45) without linear terms.
Thus, we are going to drop from the canonical transformations (10) the vectors f1 and f2

used just to eliminate the linear terms in the Hamiltonian (8). In this case, the propagator
(52) turns to be equal to

〈x′′, t ′′|x′, t ′〉 = (4πi�)−3/2

(
g′′1/2g′1/2ρ ′′ρ ′

∫ t ′′

t ′

dt

ρ2

)−1(
g

′′1/2
3 g

′1/2
3 ρ ′′

3 ρ ′
3

∫ t ′′

t ′

dt

ρ2
3

)−1/2

× exp

(
i

4�

((
x ′′

3

ρ ′′
3 g

′′1/2
3

− x ′
3

ρ ′
3g

′1/2
3

)2/∫ t ′′

t ′

dt

ρ2
3

− 1

g′′
3

(
2k′′

3 − ρ̇ ′′
3

ρ ′′
3

− ġ′′
3

2g′′
3

)
x ′′2

3 + 1

g′
3

(
2k′

3 − ρ̇ ′
3

ρ ′
3

− ġ′
3

2g′
3

)
x ′2

3

))

× exp

(
i

4�

(((
x ′′

1 cos θ ′′ − x ′′
2 sin θ ′′

ρ ′′g′′1/2
− x ′

1 cos θ ′ − x ′
2 sin θ ′

ρ ′g′1/2

)2

+
(

x ′′
1 sin θ ′′ + x ′′

2 cos θ ′′

ρ ′′g′′1/2
− x ′

1 sin θ ′ + x ′
2 cos θ ′

ρ ′g′1/2

)2)
/∫ t ′′

t ′

dt

ρ2
− 1

g′′

(
2k′′ − ρ̇ ′′

ρ ′′ − ġ′′

2g′′

)
(x ′′2

1 + x ′′2
2 )

+ 1

g′

(
2k′ − ρ̇ ′

ρ ′ − ġ′

2g′

)
(x ′2

1 + x ′2
2 )

))
, (53)

where ρi are the solutions of the differential equation (35). As previously in the same sec-
tion, the same remark can be done here for the two independent propagators that form this
propagator.

3.2 Applications

3.2.1 The Propagator for a Charged Particle in a Constant External Magnetic Field

We will consider this well known case of a particle of charge e and mass m, submitted to a
constant magnetic field B , in the direction x3, in order to check the exactness of our general
result and confront it to results obtained in other studies. The Hamiltonian of the system is

Ĥ = 1

2m

((
p̂1 + eB

2c
x̂2

)2

+
(

p̂2 + eB

2c
x̂1

)2

+ p̂2
3

)

= 1

2m
(p̂2

1 + p̂2
2 + p̂2

3) + m

2

(
eB

2mc

)2

(x̂2
1 + x̂2

2 ) − eB

2mc
(p̂2x̂1 − p̂1x̂2). (54)
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This Hamiltonian is quadratic with a hybrid coupling and an isotropy in x1 and x2 directions
and without linear terms. Subsequently, it is useful to apply immediately, in this case, the
result (53). From expressions (45) and (48) we can make these considerations:

l = − eB

2mc
= −ωc

2
, gi = 1

2m
, h = m

2

(
ωc

2

)
, h3 = ki = 0. (55)

To determine the quantities θ and ρi in the propagator (53), we have to find the appropriate
canonical transformations using the differential equations (51) and (35), which turn into the
following formulas after substituting the expressions (55):

θ̇ = −l = ωc

2
(56)

and ⎧⎨
⎩ ρ̈ +

(
ωc

2

)2

ρ = 0,

ρ̈3 = 0.

(57)

The general solutions for these equations are

θ = ωc

2
t + θc (58)

and ⎧⎨
⎩ρ = C1 cos

(
ωc

2
t

)
+ C2 sin

(
ωc

2
t

)
,

ρ3 = at + b,

(59)

θc , C1, C2, a and b are arbitrary constants of integration. As there exists a “gauge invari-
ance” in the propagator related to the choice of these constants, it would be better to use the
simplest solutions not to complicate the calculations, it means to choose these constants so
that: ρ = cos(ωct/2), ρ3 = 1, and θ = ωct/2. We substitute (58) and (59) in the propagator
(53) to obtain finally the propagator of a charged particle in a constant magnetic field as

〈x′′, t ′′|x′, t ′〉 =
(

2πi�T

m

)−3/2(
ωcT

2 sin(ωcT /2)

)

× exp

(
im

2�

(
ωc

2
(cot(ωcT /2)((x ′′

1 − x ′
1)

2 + (x ′′
2 − x ′

2)
2)

+ 2(x ′′
2 x ′

1 − x ′′
1 x ′

2)) +
(

x ′′
3 − x ′

3

T

)2))
, (60)

where T = t ′′ − t ′. And this is exactly the same result obtained with path integrals [21] and
it is a certification of our technique exactness. The remark that could be made here is that it
was not necessary to substitute ρ3 in the propagator (53) and that we could immediately, and
from the beginning, consider the propagator of the system as a multiplication of a propagator
for a free particle moving in x3 direction, and that of a 2D system in x1 and x2 directions.
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3.2.2 The Propagator for a Charged Particle in a Constant External Magnetic Field and
a Scalar Constant Potential

In the same way as in the previous paragraph, we will consider the case of a particle of
charge e and mass m, submitted to a constant magnetic field B in the direction x3, and to a
scalar potential so that the Hamiltonian of the system takes the form:

Ĥ = 1

2m

((
p̂1 + eB

2c
x̂2

)2

+
(

p̂2 + eB

2c
x̂1

)2

+ p̂2
3

)
+ m

2
2(x̂2

1 + x̂2
2 )

= 1

2m
(p̂2

1 + p̂2
2 + p̂2

3) + m

2

((
eB

2mc

)2

+ 2

)
(x̂2

1 + x̂2
2 ) − eB

2mc
(p̂2x̂1 − p̂1x̂2). (61)

The unique difference with the previous case is that

h = m

2

((
ωc

2

)2

+ 2

)
= m

2
ω2, (62)

which introduces a change in the solution of the differential equation (35), so that

ρ̈ + � 2ρ = 0. (63)

Consequently, the solution is expressed as

ρ = C1 cosωt + C2 sinωt. (64)

Hence the propagator (60) for a charged particle submitted to a constant magnetic field
without a scalar potential becomes here with the constant scalar potential as follows:

〈x′′, t ′′|x′, t ′〉 =
(

2πi�T

m

)−3/2(
�T

sin(�T )

)

× exp

(
im

2�

(
�

sin(�T )
(cos(�T )(x ′′2

1 + x ′2
1 + x ′′2

2 + x ′2
2 )

− 2 cos(ωcT /2)(x ′′
1 x ′

1 + x ′′
2 x ′

2)

+ 2 sin(ωcT /2)(x ′′
2 x ′

1 − x ′′
1 x ′

2)) +
(

x ′′
3 − x ′

3

T

)2))
, (65)

where T = t ′′ − t ′. An other study applying Schwinger action principle in other way by
resolving indirectly Heisenberg equations of motions got the same result [12]. The remark
we can make here is that the result above is available in the case where the magnetic field is
variable. Its dependence on the time appears in ωc from (56).

From the propagator (52) we can find directly a diversity of propagators for 3D TDQS
submitted to variable magnetic fields, and variable scalar potentials, and driven by variable
external forces, like: harmonic oscillator with time-dependent frequency, harmonic oscilla-
tor with time-dependent mass and frequency, damped harmonic oscillator, Calidora-Kanai
oscillator, etc.



Int J Theor Phys (2008) 47: 1156–1172 1169

4 Propagator for 3D Anisotropic TDQS

For this system, and this condition of 3D anisotropy, each of the matrices G1, G2, and G3,
related to the quadratic terms, are anisotropic ones. Subsequently, they preserve there forms
expressed in (9). The condition that should be verified here, in order to be able to use directly
result (44), is that there would not be any coupling term, i.e.

G32 = 0. (66)

This means also that there would not be a rotation in the canonical transformations (10).
Rotation matrix is then equal to identity matrix. With all these considerations, D and T
in these transformations are also anisotropic and verify expression (11). Subsequently, the
propagator (44) becomes

〈x′′, t ′′|x′, t ′〉

= (4πi�)−3/2 exp
i

�

(
f′′2x′′ − f′2x′ − i

�
�

)
×

3∏
i=1

(
ρ ′

iρ
′′
i g

′1/2
i g

′′1/2
i

∫ t ′′

t ′

dt

ρ2
i

)−1/2

× exp

(
i

4�

3∑
i=1

((
(x ′′

i − f ′′
1i
)

ρ ′′
i g

′′1/2
i

− (x ′
i − f ′

1i
)

ρ ′
ig

′1/2
i

)2/∫ t ′′

t ′

dt

ρ2
i

− 1

g′′
i

(
2k′′

i − ρ̇ ′′
i

ρ ′′
i

− ġ′′
i

2g′′
i

)
(x ′′

i − f ′′
1i
)2 + 1

g′
i

(
2k′

i − ρ̇ ′
i

ρ ′
i

− ġ′
i

2g′
i

)
(x ′

i − f ′
1i
)2

))
. (67)

This is the propagator for anisotropic 3D TDQS with varying linear terms without any cou-
pling. And it is clear that this propagator is formed from three independent propagators for
general linear quadratic systems, and each of them takes exactly the expression obtained in
our first generalisation for 1D TDQS using the same technique [14]. And this is an other ver-
ification for the efficiency of the generalization of Schwinger action principle via canonical
transformations, which is the aim of all this work.

This result is useful to determine immediately propagators for 3D TDQS with indepen-
dent movements in each of the three directions.

5 Propagators for 3D TDQS with Three Varying Anisotropic Hybrid Couplings

In this section, we are going to evaluate the propagator for a system with three different
varying couplings, what was not dealt with, using Schwinger method, before that. With the
canonical transformations we have introduced till now, only 3D isotropy in the quadratic
terms of the Hamiltonian of the system gives us the possibility to introduce three different
couplings. Our technique, using Schwinger action principle by means of canonical transfor-
mations, makes it possible to determine immediately and easily the propagator of the system,
despite of the complexity involved by the coupling terms. With this system, the matrices Gi

in the Hamiltonian (8) should be expressed as

G1 = g(t)I, G2 = h(t)I, G3 = GT
4 ,

G3 = G31 + G32, G31 = k(t)I, G32 = 1

2

( 0 l3(t) −l2(t)

−l3(t) 0 l(t)

l2(t) −l1(t) 0

)
,

(68)
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I here is the identity matrix. This involves in canonical transformations (10):

T = ρ(t)I and D = g1/2I, where D2 = G1. (69)

The coupling terms are expressed in the matrix G32 which contains three different couplings.
And as the rotation in the canonical transformations should be made in the same directions as
for the couplings in order to delete them, the rotation matrix in the canonical transformations
is expressed as

R =
3∏

l=1

Rl = (RT )−1, where

R1 =
(1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

)
, R2 =

( cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2

)
,

R3 =
( cos θ3 sin θ3 0

− sin θ3 − cos θ3 cos θ3

0 0 1

)
.

(70)

Therefore, solving differential equation (23) requires the solution of the following system
of differential equations: ⎧⎪⎪⎨

⎪⎪⎩
θ̇1 = −l1 − (l2 sin θ1 + l3 cos θ1)tg θ2,

θ̇2 = −l2 cos θ1 + l3 sin θ1,

θ̇3 = −l2
sin θ1

cos θ2
− l3

cos θ1

cos θ2
.

(71)

And differential equations (35) and (36) are reduced in this case to

ρ̈ = (t)ρ = 0, (72)

with

(t) = 4g(t)h(t) − 4k3(t) + 2
ġ(t)k(t)

g(t)
+ g̈

2g(t)
− 2k̇(t).

Finally, from the general propagator (44), the exact propagator for the isotropic 3D TDQS,
with three anisotropic varying couplings and linear terms, is written as

〈x′′, t ′′|x′, t ′〉 =
(

4πi�g′1/2g′′1/2ρ ′ρ ′′
∫ t ′′

t ′

dt

ρ2

)−3/2

× exp

(
i

�

((
R′′−1

(x′′ − f′′1)
2ρ ′′g′′1/2

− R′−1
(x′ − f′1)

2ρ ′g′1/2

)2/∫ t ′′

t ′

dt

ρ2

− 1

4g′′

(
2k′′ − ρ̇ ′′

ρ ′′ − ġ′′

2g′′

)
(x′′ − f′′1)

2

+ 1

4g′

(
2k′ − ρ̇ ′

ρ ′ − ġ′

2g′

)
(x′ − f′1)

2 + f′′2x′′ − f′2x′ − �

))
, (73)

where fi , R, and ρ, are obtained directly in resolving, respectively, the differential equations
(21), (71), and (72). This result is of great importance as these systems with deferent varying
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couplings were not dealt with, in other researches, using Schwinger method. Despite of
the complexity caused by the varying anisotropy in coupling terms and linear terms, we
have obtained an immediate result, and the applications would be made in resolving the
differential equations (21), (71), and (72) with the less possible difficulty comparing to other
techniques.

Now we are going to conclude the propagator for the quadratic Hamiltonian without
linear terms which is expressed in (45). After using in expression (47) the condition of
isotropy related to this kind of systems, as explained above in the previous paragraph, we
get the propagator of the system as

〈x′′, t ′′|x′, t ′〉 =
(

4πi�g′1/2g′′1/2ρ ′ρ ′′
∫ t ′′

t ′

dt

ρ2

)−3/2

× exp

(
i

�

((
R′′−1x′′

2ρ ′′g′′1/2
− R′−1x′

2ρ ′g′1/2

)2/∫ t ′′

t ′

dt

ρ2

− 1

4g′′

(
2k′′ − ρ̇ ′′

ρ ′′ − ġ′′

2g′′

)
x′′2 + 1

4g′

(
2k′ − ρ̇ ′

ρ ′ − ġ′

2g′

)
x′2

))
. (74)

We can remark here also that the difference between this result and that of the previous para-
graph is the omission of f1 and f2 which are vectors used in the canonical transformations to
delete linear terms.

6 Summary

In this work, we were devoted to develop a technique using Schwinger action principle by
means of canonical transformations, in order to determine exact propagators for general 3D
TDQS, with linear terms. The elimination of existing couplings by a canonical transfor-
mation containing a rotation matrix, with the diagonalization of the matrices related to the
quadratic terms in the Hamiltonian, transforms the problem to that of 3D free particle, what
enables us to avoid the resolution of Heisenberg equations of motion .

In this generalization, we obtained a general form of the propagator for 3D TDQS, related
to some temporal factors, introduced by the canonical transformations, and determined in
resolving certain differential equations.

The power of this technique resides in the possibility that it gives to obtain directly ex-
act expressions of propagators for general 3D systems, containing multiple varying and
anisotropic hybrid couplings, with the resolution of the simpler possible differential equa-
tions.

With the results we have reached till now, to be able to determine the propagator for the
general 3D TDQS, using our technique, the addition of a coupling term in certain directions
imposes an isotropy in the quadratic terms for the same directions, otherwise dynamical or
static couplings immerge with the canonical transformations. Once verifying this condition,
whatever is the anisotropy in the linear terms, the problem remains a solvable one. For this
reason, 3 kinds of systems were treated here:

(1) A system with one varying hybrid coupling and partially isotropic quadratic terms in the
same directions. The efficiency of this method and of the general solution was checked
here, in confronting with other works the result obtained in two well known particular
cases: a charged particle submitted to a constant magnetic field, and a charged particle
submitted to constant vector potential and scalar potential.
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(2) An anisotropic system with no coupling terms. The propagator of this system is formed
of three independent propagators, each of them is the propagator of a 1D TDQS in a
certain direction, and it agrees perfectly with the result we have obtained in a previous
work for this kind of systems [14].

(3) A system with three varying anisotropic hybrid couplings with an isotropy in all of the
quadratic terms. This isotropy is not imposed to the linear terms.

In this paper, we have added successfully an other stone to the generalization hopped for
TDQS by means of Schwinger action principle, and using canonical transformations. This
step is promising, and it paves the way to an extension of this technique to N -dimensional
systems for more complicated situations, and more general systems with varying anisotropic
dynamical and static couplings, in adding other terms to the canonical transformations ap-
plied to the studied systems. Therefore, N -dimensional systems, and Hamiltonians with
coulombian potentials or singular perturbations would be solvable with Schwinger action
principle via canonical transformations.
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